

Building a Cloud-Based
“Lab as a Service” (LaaS)

Introduction

Test labs represent a large ongoing investment and an opportunity for significant savings. Many

technology organizations are seeking to consolidate multiple test labs into more central, shared test

data centers that can be used by many remote user groups. The key to the success of such initiatives is

automation software and accompanying best practices in test data center design and utilization.

Test and lab automation software can provide testing organizations with the technology platform to

create successful, scalable and sustainable Lab as a Service (LaaS) clouds.

LaaS clouds not only deliver impressive CAPEX and OPEX savings, but by leveraging the full breadth of

automation frameworks, they also pave the way for automation of the whole testing process. This leads

to additional business benefits such as speedier time to market, agility in responding to market and

customer changes, and increased competitiveness.

Sustainable Automation is Key to LaaS Consolidation

When seeking to consolidate multiple, dispersed test labs into a centralized test data center, a key

challenge is effectively enabling remote users. If the highly manual processes typically at play in test labs

remain in place after consolidation, users will find that they are road blocked from being productive.

This is because remote users will need to rely on local personnel to perform manual tasks such as finding

and connecting test equipment into topologies.

Since these processes can take up to a week to perform, and since there will naturally be higher demand

on fewer local resources to perform these tasks, remote users will suffer from delayed access to

resources. Unless a software-driven approach is implemented to manage the search, reservation and

connection of consolidated lab resources into usable test topologies, lost productivity may doom the

consolidation effort by causing remote user groups to re-implement their own testing environments.

The state of the art for software that enables LaaS consolidation has advanced dramatically. Modern

LaaS automation software should deliver a broad range of capabilities that enable sustainability of the

LaaS initiative, including:

• Centralized, live infrastructure and resource inventory that is customizable to make it easily

searchable

• Inventory-aware test topology design

• Shared, calendar-based resource and topology reservation

• Connectivity mapping and automated connectivity control

• Easy to create automated provisioning tasks

• Non-programmer friendly automation workflow creation based on a library of highly reusable

test objects that can be created from a wide variety of sources and leveraged to create:

o Auto-discovery, auto base-lining and other automated maintenance routines

o Full test automation workflows

Another important concept for sustainable automation is that the platform for managing the test lab

should avoid the pitfall of using monolithic and fragile script-based approaches to automation, which

cannot scale due to their high maintenance costs. An object-oriented platform that captures and

manages all inventory resources, test topologies, provisioning actions and testing tasks in a library of

highly re-usable, easy to update object building blocks is the only architecture that ensures automation

scalability and long-term and cost-effective sustainability of LaaS cloud administration.

Best Practices for LaaS Consolidation

To achieve a successful LaaS roll-out, best in breed technology is critical but must be accompanied by

best practice methodologies:

Highly Automated Physical Layer Connectivity:

Software-based automation benefits from a structured, documented, and easy to operate

physical connectivity environment. The state of the art practices in LaaS consolidation include

deployment of Layer 1 switching to virtually eliminate manual cable patching. Of course, Layer

1 switching should be combined with sound, TIA standards-compliant data center layout and

structured cabling so that the entire physical environment can flex to changing requirements

over time.

Resourcing the Automation Infrastructure Service

The most successful lab automation deployments involve dedicating personnel resources with

data architecture and programming skills to build and maintain the object library of inventory

resources, test topologies, provisioning and shared testing objects and workflows. The broader

user community can then leverage this library to build and reserve topologies, easily perform

provisioning, and progress into test automation as the library is built out. Dedicating resources

to maintaining the object library as an infrastructure service is strongly recommended because if

the utility and ease of use of the object library is not maintained at high levels, users will

abandon the automation system, wasting the investment.

A Phased Approach:
Successful LaaS automation is typically built in phases, where each phase aims for a visible productivity

gain and return on investment in a reasonably short time in order to build user engagement and

momentum and create realistic expectations.

Generally speaking, achieving “hands-off” visibility and reservation of lab resources using Layer 1

switching and automation software is the first major goal. This level of automation allows remote users

to be on an equal productivity footing with local users, and promotes deep buy-in of all user groups with

the consolidation initiatives. Any LaaS consolidation project should ensure that the centralized data

center is designed with this in mind.

The second automation phase is to free testers from the time-consuming tyranny of low-level device

provisioning tasks. This involves turning manual provisioning processes into easy to invoke, menu-driven

tasks from the automation GUI. The best practice in this stage is to ensure the sustainability of the

system, by avoiding reliance on fixed scripts. While it may be relatively easy to create a first set of

provisioning scripts for some usage scenarios, the time-consuming nature of script maintenance will too

often cause the provisioning capabilities of the system to become out of date. The negative experience

of using scripts that don’t work will end up alienating users and deepen their reliance on manual

processes. Automation of provisioning tasks typically start with the basic provisioning steps needed to

get DUTs to a particular state, such as uploading OS images or applying patches. More advanced

provisioning tasks involve common configuration steps to ready the logical layer of a test topology, such

as configuring VLANs, routing adjacencies, or tunnels on physical or virtual switches. These automated

provisioning objects help test engineers more easily accomplish the routine tasks that often dominate

their workdays, and allows them to focus more on higher order thinking to achieve maximal test

coverage.

A third phase of LaaS automation that is short of full test automation is to create automated

maintenance routines. Examples include auto-discovery, which helps keep the inventory up to date, and

auto-base lining returns devices back to their default provisioning states on a timed basis. These types of

routines require development of a comprehensive set of device control/interface automation objects for

all necessary devices in the test infrastructure, so that they can be leveraged across multiple

maintenance automation processes.

The Path to Testing Velocity—Full Test Automation

A modern LaaS automation software platform will go beyond hands-off test topology design and

automated provisioning. It will also provide the way to implement full test process automation. This

more advanced form of LaaS automation means the creation of a library of reusable testing task objects.

Best practices here utilize software tools to enable the construction of actual test automation workflows

from those objects by non-programmers. This is the only way for test automation to achieve high

percentage penetration of the overall testing process. However, organizations that invest the time and

programming personnel to develop and maintain the automation task library will find that they can

dramatically increase the speed and thoroughness of testing. This results in faster time to market for

new products and services and higher market competitiveness.

Test Shell—The Industry’s Choice for LaaS Automation

A best of breed commercial solution deployed by industry-leading organizations worldwide,

TestShell offers the fastest path to a successful and sustainable LaaS, allowing managers and

engineers to:

• Manage data center inventory including physical DUT and testing equipment, L1 switches, and virtual

resources such virtual machines and virtual switches in a live, searchable database of resource objects

tagged with searchable attributes, eliminating manual searching for equipment in racks and allowing

engineers to interface with the data center infrastructure efficiently via software. TestShell’s inventory

and resource management allows for object hierarchies which can represent relatively simple nested

resources such as chassis, blades and ports or complex, pre-integrated resources stacks such as

converged infrastructure and “data center in a box” solutions.

• Create test topologies via a software GUI that allows drag and drop of resource objects onto a canvass,

visually ascertain availability, design and sanity check connectivity, and save the entire topology as a

higher level object in the resource library, so that it can be reused later or by other engineers.

• Schedule resources and entire test topologies through a common calendaring system. Resource

conflicts can be easily resolved since it is easy to find out who is using resources at any time.

• Manage connectivity remotely by generating patching or cabling requests to lab administrators, or if

Layer 1 switches are in use, to automatically connect test topologies, enabling true ‘hands-off’ test

topology management.

• Make device provisioning error-free by building a library of easily updated automation objects for

common provisioning tasks that can be launched from a right click menu in the graphical test topology

view. Device provisioning can include uploading OS images, or common configurations such as creating

GRE tunnels or routing adjacencies between virtual switches.

• Create auto-discovery and auto-base lining processes that leverage TestShell’s extensive array of

control interfaces, GUI automation and scripting capabilities to streamline the management of inventory

and device states.

• Roll out full test automation by the creation of an automation object library. This includes the ability to

integrate legacy automation scripts as testing objects as well as creation of new test automation objects

through screen, GUI and other capture processes.

• Generate real-time reports and dashboards on data center device utilization, topology

reservations vs. activations, and even comprehensive test results.

Conclusion

TestShell automation accompanied by best practices methodologies offer organizations an opportunity

to successfully and sustainably deploy LaaS clouds, and to go beyond resource sharing to automated

provisioning and ultimately full test process automation. TestShell’s object-oriented architecture

provides the state of the art platform that the industry’s leaders rely on to move beyond traditional,

script-based approaches to automation and modernize their testing processes. The net result is

significant CAPEX and OPEX savings, increased business velocity and agility, and higher levels of market

competitiveness. To learn more from the global leader in test and lab automation solutions, please visit

http://www.qualisystems.com .

